Simulating Pliocene warmth and a permanent El Niño-like state: The role of cloud albedo
نویسندگان
چکیده
Available evidence suggests that during the early Pliocene (4–5 Ma) the mean east-west sea surface temperature (SST) gradient in the equatorial Pacific Ocean was significantly smaller than today, possibly reaching only 1–2◦C. The meridional SST gradients were also substantially weaker, implying an expanded ocean warm pool in low latitudes. Subsequent global cooling led to the establishment of the stronger, modern temperature gradients. Given our understanding of the physical processes that maintain the present-day cold tongue in the east, warm pool in the west and hence sharp temperature contrasts, determining the key factors that maintained early Pliocene climate still presents a challenge for climate theories and models. This study demonstrates how different cloud properties could provide a solution. We show that a reduction in the meridional gradient in cloud albedo can sustain reduced meridional and zonal SST gradients, an expanded warm pool and warmer thermal stratification in the ocean, and weaker Hadley and Walker circulations in the atmosphere. Having conducted a range of hypothetical modified cloud albedo experiments, we arrive at our Pliocene simulation, which shows good agreement with proxy SST data from major equatorial and coastal upwelling regions, the tropical warm pool, middle and high latitudes, and available subsurface temperature data. As suggested by the observations, the simulated Pliocene-like climate sustains a robust El Niño-Southern Oscillation despite the reduced mean east-west SST gradient. Our results demonstrate that cloud albedo changes may be a critical element of Pliocene climate and that simulating the meridional SST gradient correctly is central to replicating the geographical patterns of Pliocene warmth.
منابع مشابه
Cool La Niña during the warmth of the Pliocene?
The role of El Niño-Southern Oscillation (ENSO) in greenhouse warming and climate change remains controversial. During the warmth of the early-mid Pliocene, we find evidence for enhanced thermocline tilt and cold upwelling in the equatorial Pacific, consistent with the prevalence of a La Niña-like state, rather than the proposed persistent warm El Niño-like conditions. Our Pliocene paleothermom...
متن کاملPermanent El Niño-like conditions during the Pliocene warm period.
During the warm early Pliocene (approximately 4.5 to 3.0 million years ago), the most recent interval with a climate warmer than today, the eastern Pacific thermocline was deep and the average west-to-east sea surface temperature difference across the equatorial Pacific was only 1.5 +/- 0.9 degrees C, much like it is during a modern El Niño event. Thus, the modern strong sea surface temperature...
متن کاملSimulations of warm tropical conditions with application to middle Pliocene atmospheres
During the early and mid-Pliocene, the period from 5 to 3 million years ago, approximately, the Earth is believed to have been significantly warmer than it is today, but the reasons for the higher temperatures are unclear. This paper explores the impact of recent findings that suggest that, at that time, cold surface waters were absent from the tropical and subtropical oceanic upwelling zones. ...
متن کاملEvidence of El Niño/la Niña–southern Oscillation Variability in the Neogene- Pleistocene of Panama Revealed by a New Bryozoan Assemblage-based Proxy
Here we explore how fossil cheilostome bryozoans can demonstrate El Niño/La Niña–Southern Oscillation (ENSO) variability in ancient tropical environments of the tropical eastern Pacific and southwestern Caribbean when used collectively to produce frequency distributions of estimates of mean annual ranges in temperature (MARTs) via zooid-size MART analysis (zs-MART). The approach is based on lin...
متن کاملEl Niño's tropical climate and teleconnections as a blueprint for pre-Ice-Age climates
[1] At 2.7 million years ago the warm equable climates of early and ‘‘middle’’ Pliocene time (used here to mean from 5 to 2.7 Ma) were replaced by recurring ice ages. Most attempts to explain the change appeal either to changes in CO2 in the atmosphere or reduced heat transport by the Atlantic Ocean. The sources of the strongest teleconnections in the current climate, however, lie in the tropic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014